
The 2020 State of Code Review | 1

The 2020 State of Code Review:
Trends and Insights into Collaborative Software Development

https://smartbear.com?utm_medium=resource&utm_source=ebook&utm_campaign=socr19

The 2020 State of Code Review | 2

The 2020 State of
Code Review Report is
presented by SmartBear
We provide tools to help you
with API quality, collaboration,
monitoring, and more.

SoapUISwagger

Open
Source
Tools

ReadyAPISwaggerHub Collaborator

Pro
Tools

https://www.soapui.org/tools/soapui/
https://swagger.io
https://smartbear.com/product/ready-api/overview/
https://swagger.io/tools/swaggerhub/
https://smartbear.com/product/collaborator/overview/

The 2020 State of Code Review | 3

This survey was designed to establish benchmarks for the

software industry concerning the ways in which teams

and organizations are developing high quality software in

2020. The structure of this year’s report closely mirrors the

structure of our past editions to provide a meaningful year-

over-year comparison and uncover significant trends around

code quality and development approaches. This report

covers the following topics:

 | Perceptions on Code Quality Practices

 | Common Approaches to Code Review

 | Tools & Systems Across Development

 | Trends in Team Structure and Expectations

 | 50 Responses to “What’s Your Ideal Code-Review Process?”

SmartBear Software conducted a global online survey

over the course of ten weeks during the months of June

and July 2020. The findings are based upon aggregated

responses from more than 740 software developers,

testers, IT/operations professionals, and business leaders

across 20 different industries. Participants in the survey

work at companies of all sizes, from fewer than 25

employees to over 10,000. Similarly, their software teams

range in size from fewer than 5 to more than 50.

Preface:

Methodology:

The 2020 State of Code Review | 4

Introduction

Section 1: The Code and Document Review Process

Section 2: Perceptions of Code Review

Section 3: The Development Stack in 2020

Section 4: Release Cadence and Team Firmographics

Section 5: Recommendations for Your Team

Section 6: Handing Over the Mic

5 |

10 |

14 |

19 |

22 |

26 |

32 |

Contents

The 2020 State of Code Review | 5

Introduction
Over the course of this report, we’ll

cover a number of subtopics around

code review and code quality. To start,

these are some of the most high-level

software development findings from

this year’s survey.

For the 2nd year straight, 2 out of 3

respondents are satisfied with

their code quality.

With all of the information we’ve gathered this

year, there’s of course the underlying, “How has

this been affected by the pandemic?” No one can

say for sure – especially since our survey went

underway in the middle of it – but the trends we

see are that teams are collaborating more

remotely because, well, they have to.

For some companies, COVID-19 has accelerated a

remote-first culture. With it comes greater demand

for various synchronous tools such as Slack, Zoom,

and Google Meet.

We’ve seen a similar trend in demand for Collaborator.

With a large majority of people working remote, meeting-

based and ad-hoc (over the shoulder) reviews aren’t

an option. In addition to allowing teams to collaborate

remotely, Collaborator is also a workflow tool, ensuring a

code- and document-review process is being followed

without having to watch it, per se.

Quality and satisfaction are up.

Last year, we noted an upward trend in satisfaction

with software quality. This year, satisfaction has

once again gone up: 64% of respondents reported

being satisfied, making it a 6% increase over the

last two years. There’s also a noticeable drop

in dissatisfaction.

Over the last 5 years, at least 55% of respondents

indicated they’re happy with the quality of software

they help deliver. It’s encouraging to see that more

than half of people are satisfied with the solutions

they’re delivering. It speaks to the sense of ownership

people have for their contribution and their desire

to ship quality products.

This trend tells us that less teams are sacrificing

quality to meet deadlines. It’s safer now to assume

that businesses know rushing out unfinished product

is not a viable, long-term strategy. So their natural

conclusion (along with ours) is to invest in better

processes, because it helps ensure deliverables

with higher quality.

The 2020 State of Code Review | 6

I am satisfied with the overall quality of the software I
help deliver (specifically regarding performance, bugs, etc.)

Collaboration is helping quality go up.
For the second year in a row, 2 out of 3 respondents

are happy with the quality of the software they

deliver. This is based on 65% of survey respondents

stating they’re either satisfied or highly satisfied.

Only 11% are unhappy with the quality of software

compared to 14% last year.

Over the last 5 years, at least 55% of respondents

have indicated they’re happy with the software

quality. In 2018, there was a drop in satisfaction,

with only 58% of respondents being satisfied. But

over the last two years, this has increased by 6%.

Our assumption is that, with more and more teams

moving to Agile, they’re automating processes and

collaborating more effectively (fig.1).

Companies are making (and missing)
deadlines at the same rate as before.

The results of our next question correspond with

the prior question’s percentages. 65%, or about

2 out of 3 respondents, told us their company is

regularly able to get releases out on time. Only 12%

of respondents indicated that their company often

misses deadlines (fig.2).

Since 2016, the number of respondents that say

their company often misses release deadlines has

increased by 1%, while those who regularly meet

fig.1

The 2020 State of Code Review | 7

My company is regularly able to get releases out on time.
fig.2

I am satisfied with my team’s current code review process.
fig.3

deadlines has gone down by 1%. So, there has not

really been any change to the success rate of re-

leases going out on time. For those that are neutral,

it begs the question that half their releases are on

time, and perhaps half are late.

Also, year over year, each grouping (Strongly Agree

through Strongly Disagree) is rather consistent. It

makes us wonder if those that aren’t able to get

releases out on time are doing anything about it. It

remains to be seen if the problem lies in things like

personnel or general communication.

Half of respondents are satisfied with
their code review process.

As for satisfaction with their team’s current code-

review process, 1 out of 2 respondents are at

least satisfied (fig.3). Almost a quarter (23%) of

respondents are not. Since 2018, we’ve seen a 6%

increase in code-review process satisfaction. This is

great news – people are collaborating through their

code-review process, and overall satisfaction with

the quality is increasing as well.

Over the last 3 years, there’s been a 4% decrease in

the amount of people dissatisfied with their code-re-

view process. This is a positive trend, even if they

only feel neutral about the change. However, the

numbers suggest they’re changing camps entirely,

and are landing in “satisfied” territory.

N = 669

The 2020 State of Code Review | 8

Number 1 way to code quality? Review.

Over the last 3 years – and somewhat expected – our

respondents have told us that the number one way

a company can improve code quality is through Code

Review. This year, 24% of our respondents indicated this.

Results also indicated that Unit Testing is the second

most important at 20% of responses, followed by

What is the number one thing a company can do to improve code quality? fig.4

Continuous Integration and Continuous Testing. As

can be seen by the chart, unit testing is closing the

gap on code review as the number one way to im-

prove quality. This could be due to the fact that unit

tests can be automated, and therefore catch issues

without the involvement of other people. Regardless

of which way is number 1, it’s important for teams to

have a multi-faceted approach to quality.

In 2020, we saw a jump in the importance of Training/

Onboarding in order to improve code quality. Since

2018, this has increased by 3%. We saw a slight

decrease in the value of code review, dropping 3%

over the last year (fig.4).

Also over the last 3 years, the importance of Functional

Testing has dropped 3% for our respondents.

The 2020 State of Code Review | 9

There’s a clear correlation between
code review satisfaction and code
quality satisfaction.

This chart shows the correlation between how

happy respondents are with code review, and the

satisfaction in overall software quality (fig. 5). It

proves to be a handy way to see how code review

can directly impact software quality.

Over 80% of respondents who were satisfied with

their code review process were also satisfied with

the overall quality of their software. This is a similar

percentage compared to last year’s report, indicating

an unchanged opinion that code review is important

in delivering quality software.

Satisfaction with one’s code review process was

the most likely indicator of overall software quality

satisfaction. Further on in this report, we’ll explore

year-over-year changes in code-review practices to

identify common traits that contribute to a better

peer-review approach.

Correlation between code review process satisfaction
and code quality satisfaction. fig.5

The 2020 State of Code Review | 10

Section 1:
The Code and
Document Review
Process

New code-review approaches coming

to the forefront.

The topic of “code-review approaches” was a multi-

facetted question asked several times throughout

the survey, so we have several takeaways.

Roughly 63% of respondents participate in some

form of code review, at least on a weekly basis.

When it came to frequency and which approach

used, 27% of respondents cited tool-based code

review on a daily basis, and 19% noted weekly basis

(fig. 6). This is up 4% from last year. For ad-hoc reviews,

15% participate on a daily basis, and 29% weekly. This

is unchanged from last year. With the exception of

tool-based reviews, reviews are performed more often

on a weekly basis by our respondents.

More bi-weekly reviews than before.

Over the last 5 years, respondents indicated they

participate in biweekly reviews much more than before.

 | Ad-hoc reviews 13% more

 | Meeting-based 9% more

 | Tool-based 6% more

Since last year, there was an average increase

of 3% in tool-based, meeting-based, and ad-hoc

monthly peer reviews.

How often do you participate
in these common code review
approaches? fig.6 N = 733

In our 2016 survey, nearly 40% of respondents said

they never participate in tools-based code reviews,

while 47% said they never participate in meeting-

based code reviews. Even for ad-hoc reviews,

The 2020 State of Code Review | 11

28% said they never took part. All of these approaches

to code review have increased in popularity by

roughly 9% over the last 5 years.

Weekly reviews most popular, but
less of them are meeting based.

When all three approaches are looked at together, our

respondents have shown us that a weekly peer-review

cadence seems to be the most popular approach.

When looking at the data, it’s not surprising that

the number of people that never do meeting-

based reviews is higher than the number of people

Which of the following artifacts do you review, if any? fig.7

that never do ad-hoc and tool-based reviews.

Meeting-based reviews are often seen as more time

consuming than the other forms.

Additionally, many teams find it difficult to get

everyone together in a meeting room due to

distributions introduced by the global pandemic. In

fact, many teams were forced to suddenly transition

and learn how to collaborate remotely and across

multiple time zones. Tools like Zoom and Microsoft

Teams do make meeting-based reviews, though

virtual, a feasible option, especially with the increase

in remote workforces.

Artifact reviews are generally
going down.

Over the years, the review of artifacts has generally

trended downwards. This may be due to the transition

away from waterfall workflows to more Agile software

development practices that encourage iteration.

People may have the perception that artifact review

is not as critical, since they’re allowed (as defined in

the Agile manifesto) to respond to change instead of

following a plan (fig. 7).

Out of all our respondents who do code review, 90%

review artifacts. Exactly 1 out of 2 of those respondents

The 2020 State of Code Review | 12

Which of the following document types do you review? Select all that apply fig.8

are reviewing Test Cases, Requirements, and

Documentation. Over the last five years, respondent

answers have indicated they’ve been reviewing User

Stories 20% less – 13% of which dropped in the last

year. It’s hard to know why there has been such a

significant drop, considering the growth of BDD.

Test Cases and Requirements are also down about

4% since 2019, and down over 12% since 2016.

We’ve seen a decline over the last few years across

this entire list of artifacts being reviewed, though

Design Docs and Documentation saw a small bump

from 2019 results.

To dig a little deeper into the document review

process, this year we added a new question about

what specific document types respondents came

across to review.

Out of the 90% of respondents that participate

in at least some type of document review, almost

half of them review Text and Microsoft Word

documents (fig. 8). The percentage of PDFs under

review came in at 40%.

Respondents also indicated that they review

Confluence Wiki Pages, Google Docs, Swagger Design

Specs, and more.

N = 669

The 2020 State of Code Review | 13

How do you conduct document
reviews?
When the question of “how” came up, 1 out of 2

respondents revealed they conduct document reviews

in meetings, and about 30% participate in them “over

the shoulder,” so to speak.

Currently, 43% of respondents conduct document

reviews in a native tool like Confluence, Microsoft

Word, or Microsoft PowerPoint, and 32% use a

peer review tool for their document reviews. It’ll

be interesting to see how these percentages will

change going forward.

Data suggests artifact review
is declining, but is it?

In all, the year 2020 saw a few additional document-

review questions added to the survey. Though the

data suggests that artifact review (other than code)

is generally declining, what’s surprising is that that’s

not what we’re seeing at SmartBear. We find that a

lot of both new and current customers are coming

to us to learn more about document review.

What isn’t surprising is the types of documents

people are reviewing, or that they’re performing these

document reviews in either meetings or in the native

tool itself. With the latter, many are finding that the

lack of process is making it challenging to ensure

documented quality reviews are taking place.

The 2020 State of Code Review | 14

An effective code-review process is key to ensuring

the long-term quality of the code base – both

from a defect perspective and for readability. As

individuals, we experience code-review benefits

differently than that of the business as a whole.

This section explores this by looking at common

benefits, use cases, and business drivers.

Improved Software Quality has been the #1 benefit

of code reviews since we started this report five

years ago (fig. 9). This was followed by Sharing

Knowledge Across the Team, and the Ability to

Mentor Less-Experienced Developers.

Since 2016, we’ve seen a 12% increase in the importance

of mentoring less-experienced developers, and a

7% increase in knowledge sharing across the team.

Teams continue to value knowledge sharing above

external benefits. Such an investment by teams in

long-term individual improvement is encouraging.

It creates more productive and efficient teams, with

better results down the line.

Also noted in the past five years, Adherence to Coding

Standards/Conventions has risen 7%. Strengthen

Competitive Advantage, Enhanced Mobility of Code,
and Enhanced Customer Satisfaction/Retention have

Section 2:
Perceptions on
Code Review

What do you think are the most important benefits of code review?
Select all that apply fig.9 N = 735

The 2020 State of Code Review | 15

generally declined as reasons since 2018 (fig. 10).

Though not as popular, they’re still legitimate reasons

for many teams, and presumably secondary benefits

from the more popular benefits cited on this chart.

Also note that Internal Audits have increased in

importance by 6% since 2019.

What’s great to see about code review is that

regardless of the reason why you or your team

might do it, this shows that many teams are getting

onboard with the idea – and that there are numerous

seen and unseen benefits they’re getting out of it.

Because the use of code tools has grown so much,
the inherent question of why you would you do it is
what prompts us to ask this each year.

And with that, Improving Code Quality is the

number one business driver when determining a

need for a code-review tool, and has been number

one for five years in a row (fig. 11). Although we

noticed a slight drop (1%) since last year, overall it’s

grown by 10% since 2016.

Most notably, Recent Bugs/Outages have grown

significantly in importance since 2016, up 33% since

then, and up 4% since last year. Internal Audits have

also become more important, up 7% in the last

year and 24% in the last five.

Benefits of Code Review (Gaining/Losing Attention) fig.10 N = 735

What are the business drivers that most determined your team’s
need for a code review tool? Select all that apply fig.11

The 2020 State of Code Review | 16

Why the increase across the board.

We continue to see record-setting levels of software-

caused recalls across industries like automotive,

healthcare, and consumer devices. Throughout

2020, software defects have impacted items as varied

as airports, cars, parking meters, video games, and

satellites. Additionally, new cybersecurity challenges

are forcing teams to address vulnerabilities with

more caution and nuance than ever before.

With the push to release software more frequently,

for many teams it’s come at a high cost: quality.

Though code review is seen as a critical component

to improving quality, several other initiatives are

seen that way, too, including unit testing, integration

testing, etc. It’s important for organizations to focus

on an area of weakness, improve on it, and then

tackle the next. As the saying goes, “If you try to

chase two rabbits at once, you won’t catch either.”

The same could be said for attaining software quality.

4 in 5 respondents agree that they
often learn from others when they
participate in code reviews.

This has been one of the questions with the highest

Strongly Agree rate since 2019. In fact, when

considering this question, only 6% of reviewers

indicated that they don’t frequently learn from

others during code reviews (fig. 12).

Strengthening teams and individuals.

One of the benefits to peer review is our ability

to share knowledge. However, it’s important to

remember that sharing knowledge isn’t about telling

people how to do something, but instead about

coaching. Encouraging team members to do their

own research, or providing them with a reference

for how something could be done differently, is

a great way to pass along knowledge and coach

without you being the “expert.”

This helps reviews be a little more impartial and

can keep tension down between team members.

After all:

If you’re not learning

from reviews, what other

source is providing you that

unique perspective?

I often learn from others
when I participate in code
reviews. fig.12 N = 674

“

The 2020 State of Code Review | 17

In other avenues of code review’s benefits, we once

again asked respondents if they use it to help bring

new employees up to speed. 60% of teams that

participated agreed that, yes, they use code review

to train and onboard new developers (fig. 13).

Looking at it further, only 20% of teams do not

leverage code reviews in this way.

This year, we also wanted to see how training and

onboarding new developers with code review

correlates with satisfaction of software quality.

We’ve found that software professionals who are

using code review for onboarding developers are

50% more likely to be satisfied with their software

quality. Respondents who use code review to

onboard devs are 75% satisfied with the quality of

software being delivered.

Alternatively, those who are satisfied with code

quality fall to 50% if they do not use code review for

onboarding and training new developers.

Digging further into each teams’ operations,

respondent answers show that only 35% of teams

regularly pull reports and metrics on their code-

review process. Even though it shows more teams

are not tracking than are, this year it’s up 7% since

2019, so trending upward. 40% of teams don’t pull

reports or metrics regularly, which is down 8%

since last year.

On a higher level, it appears that 55% of teams

have guidelines for how their reviews should

be performed. This is up versus 2019 reports,

but only slightly. Less than 25% report to

having no guidelines.

My team uses code-review
to onboard and train new
developers. fig.13

My team regularly pulls
reports and metrics on our
code-review process. fig.14

My team has guidelines
for how reviews should be
performed. fig.15

N = 673 N = 671 N = 672

The 2020 State of Code Review | 18

Process is the key – despite how
you feel about it.

Guidelines for how reviews should be conducted

are critical to teams and individuals getting the

most out of their reviews (fig. 14). Though most

of us are not big fans of process, it’s still a key

element to driving consistency and quality. Your

code-review guidelines don’t need to be heavy

handed; they can be a short checklist to remind

you of some fundamental items to look for in a

review. Things even as simple as including both a

junior and senior developer, as well as QA team

member, on every review.

Pulling metrics is a great way to see where you

might have areas for process improvement.

Reports can inform the team of trouble areas,

or show the types of issues that keep cropping

up during reviews (fig. 15).

The 2020 State of Code Review | 19

Git is the #1 used version-control tool.

The answer to the below question was overwhelmingly

Git, which pulled away from the pack in 2016 and

has increased its lead every year. This year it reaches

an all-time high at 77%, followed by Subversion at

13%, and TFS at 12%, the latter two having taken a hit

in recent years (fig. 16).

Git has trended up over 33% in the last 5 years, with

a 3% increase in the last year. Also in that span of

time, Microsoft TFS has seen an 11% decline as Git

has grown. Perforce also with a 6% decline since 2016.

Nearly 10% of respondents indicated they

use no SCM system. This could be caused by

some respondents focusing on document

reviews, or simply be individuals or small teams

that don’t believe they need one. Another

possibility is that some respondents are not

actively using one because of their job function.

To put it in perspective, the audience of the

survey breaks down as follows: at least 50%

developers, 12% software architects, and 8%

development managers.

With the popularity of GitHub, GitLab, Bitbucket,

Azure DevOps and others growing, it’s not surprising

that Git continues to see growth year over year

while others decline as they’re replaced.

Section 3:
The Development
Stack in 2020

Which software configuration management system (SCM) do you or
your company currently use? Select all that apply fig.16

The 2020 State of Code Review | 20

What tool are you using for requirements management?
Select all that apply fig.17 N = 652

Jira (Atlassian) is the #1 used tool
for requirements management
since 2016.

When it comes to requirements management,

1 out of 2 respondents made it known they

use Jira. Jira has grown by 20% since 2016, but

curiously saw a slight downward trend in our

survey this year (fig. 17).

Confluence is a close second with 36% of software

developers using it, while Microsoft products –

including Word and Excel – have grown 5% since

last year. Microsoft Team Foundation Server (TFS)/

Azure DevOps has seen a 2% decrease since 2019.

We’ll see if that continues to trend down.

Other responses included Trello, Google Docs,

GitHub, and Asana.

The adoption of repository hosting
tools continues to grow.

It shouldn’t come as any surprise that the use

of repository hosting tools continues to grow.

As more and more companies move away from

The 2020 State of Code Review | 21

legacy-version control tools such as CVS, SVN, and

others, Git is the natural choice. With that, many

organizations see value in moving to a repository

hosting tool as part of that transition.

The benefit of transitioning to a repository hosting

tool is that it comes with a number of features, one

of which is the ability to perform some level of code

review. With this built-in component, some teams

and organizations can do all the code review they

need through these tools. In this year’s survey, 67%

of respondents said they use (GitHub, GitLab, or

BitBucket) for code review (fig. 18).

For peer review tools, which 25% selected in the

multiple-choice question, 10% reported using

Collaborator. About 25% of people reported using

static analysis tools for code review. Though static

analysis isn’t quite peer code review, it is a key

review tool that teams should have in their toolbox.

Since 2016, the adoption of repository hosting

tools including GitHub has grown by 43%, growing

4% since last year. Also since last year’s report, the

percent of respondents indicating they Don’t use

any tool for code review has gone down 3%.

Within your department, do you currently use any of the
following tools for code review? Select all that apply fig.18

N = 660

The 2020 State of Code Review | 22

Most new releases come monthly.

When asked how often new releases go out,

28% of teams reported that they deliver Monthly.

Deliveries of Quarterly, Bi-Weekly, and Weekly were

just behind, leaving a relatively wide gap before

Daily and Annually (fig. 19).

Since 2019, we’ve seen growth in the number

of teams releasing on a quarterly and monthly

basis, while those delivering on a daily basis has

decreased by 2%.

Requirement changes are clearly in
the way of timely releases.

The biggest deterrent to getting a release out on

time is Changing Requirements. 65% of respondents

made this the overwhelmingly top answer to the

main roadblock to deadlines. This was the #1

problem in 2019, as well (fig. 20). If we reflect back

to the question about which artifacts people are

reviewing, remember that Requirements reviews are

declining. It’s possible, and likely, that requirements

are changing – but it’s also possible that there’s no

consensus on the requirements that were written,

since they’re not being reviewed by the larger team.

Regression Bugs, Waiting on QA, and Acceptance Bugs

all nearly tied for second at around 25%. Waiting on

QA is becoming slightly less of a problem year over

year. Executive Sign-Off has been less of a roadblock

in the last year, down 6%.

The amount of responses indicating there are no

roadblocks that prevent their team from getting a

release out on time has increased by 2% since 2019.

Section 4:
Release Cadence
and Team
Firmographics

How often does your team put out a new release? fig.19
N = 543

The 2020 State of Code Review | 23

A note on saving time
The Navy SEALs train with the idea that
slow is smooth and smooth is fast. Many
software development organizations find
themselves going very vast and hoping for
smooth results (quality, on-time releases).

What we know is that taking time to review
requirements with our customers and
the entire cross-functional team may feel

What prevents your team the most from getting a release out on time? Select all that apply fig.20

slow, but it ensures that everyone is on the

same page. The opportunity for the entire

team to review the requirements, and to ask

clarifying questions, allows the development

process to go more smoothly. If you include

the customer’s feedback throughout the

lifecycle, it will help you stay aligned until the

end of the process.

Should the requirements change, which
they inevitably do, the team can realign
based on the new information and
continue to move forward in a ‘slow is
smooth’ approach. This process provides
realignment and keeps everything running
more smoothly, which is ‘fast’.

– Justin Collier, Collaborator Product Manager

“

N = 540

The 2020 State of Code Review | 23

The 2020 State of Code Review | 24

Dev teams increasingly number
around 6-10.

When it comes to development team size, 45% of

respondents are on a development team of 6-10

people, and 70% are on a team of 10 or fewer (fig. 21).

Only 6% are on a development team of over 51 people.

Since 2016, larger teams of 11 or more continue to

be on the decline. On the other hand, teams of less

than 5, or 6-10, either hold steady or increase. As

can be seen, teams of 6-10 have increased by 15%

since 2016 and seem to be the size of choice. The

latter information makes sense, given the continued

transition to Agile methodologies.

Company size seems to be equally
represented in this report.

For total number of employees at the companies of

our respondents, about 22% of employees are at

a company with fewer than 25 people (fig. 22). 21%

work at a company with 101-500 people. Note that

respondents from companies of 10001+ employees

are down 12% since 2016.

What is the size of the development team you are on?

What is the total number of your employees in your company?

fig.21

fig.22 N = 549

The 2020 State of Code Review | 25

The survey included many respondents from a

variety of companies, though 36% of respondents

work in the computer software industry, and 12%

reside in financial services (fig. 23). We’ve seen an

increase of 12% in additional responses from the

financial services industry. The percentage of those

in the computer software industry has experienced

an increase of 9% from responders.

What industry do you work in? fig.23 N = 547

The 2020 State of Code Review | 26

Code review processes vary from industry to industry

and team to team, even within the same organization.

This section focuses on the key differences between

teams that are either essentially satisfied or dissatisfied

with their code review processes. We’ve removed

respondents who were neutral about their code

review processes so that the data is easier to digest.

Here are 5 recommendations for teams looking to

improve their code review process. Our conclusions

are similar to last year, which illustrates how

fundamental they are.

1. Daily code reviews are key.

In the chart below, you can see the difference in

review frequency between respondents who are

satisfied with their code review process and those

who are not (fig. 24).

Satisfied teams perform code reviews on a

daily basis (44%) compared to teams that are

dissatisfied (30%). Last year, the disparity was 53%

and 32%, respectively, and in 2018 the disparity

was 45% and 22%.

Though some developers feel that code review is

disruptive to their productivity, many see it as an

opportunity to not only improve the code base but

to also reduce bugs, train junior team members,

and increase knowledge share across the team.

Section 5:
Recommendations
for Your Team

How often do you participate in any kind of code review process?
fig.24

The 2020 State of Code Review | 27

2. More tool-based reviews, more
code satisfaction.

There are several types of approaches to code review.

Many teams utilize several of the approaches to

meet their needs based on the immediate situation.

The approaches include tool-based, ad-hoc (or “over

the shoulder”), and meeting-based reviews.

This year’s report reaffirms that taking a tool-based

approach makes a major difference on code review

satisfaction (fig. 25). Teams that perform tool-based

reviews are more likely to be satisfied with their overall

code quality. Cohorted by code-review satisfaction, 81%

of satisfied respondents are conducting some kind of

tool-based reviews. Comparatively, only 58% of unsatis-

fied respondents are conducting tool-based reviews.

Based on these results, we highly recommend

conducting tool-based code reviews. Your team is

more likely to be satisfied with your code-review

process, and subsequently more satisfied with your

overall code. If you’re a developer on a team that

needs additional budget, or managerial approval to

make this possible, share this report with them or

this case study in which a company reduced their

code- and test-review timeline by 70%.

How often do you participate in a tool-based code review process?
fig.25

https://smartbear.com/resources/case-studies/heart-test-laboratories/?md=blog

The 2020 State of Code Review | 28

3. Code reviews need clear guidelines.

As mentioned in the “Perceptions of Code Review”

section, 56% of respondents answered that

“guidelines for how reviews should be performed”

have been defined for their team. The chart below

shows just how impactful guidelines can be in

relation to code-review satisfaction (fig. 26).

Teams with guidelines are twice as likely to be

satisfied with their code reviews.

Cohorted by code-review satisfaction, 76% of

satisfied respondents have guidelines on how

reviews should be performed. Comparatively, only

26% of unsatisfied respondents have guidelines.

The clearer you can set expectations, the more

likely your team will produce higher quality

software. This applies to both code and document

reviews. Additionally, the satisfied code review

cohort responded that they review on average 3.6

types of artifacts. The dissatisfied cohort responded
that they reviewed, on average, 3 types of artifacts.

How can you ensure that your team is clear on expec-

tations? First, define and assign responsibilities to team

members. Second, outline them in a checklist for both

code and document reviews. Code-review tools like

Collaborator let you build custom checklists in review

templates, so participants with different roles and

responsibilities can easily see what’s expected of

them on each project.

My team has guidelines for how reviews should be performed.
fig.26

The 2020 State of Code Review | 29

4. Pull reports to get insights on
how to improve.

Teams that report on their process are more than 3X as

likely to be satisfied with their code reviews (fig. 27).

50% of satisfied reviewers (those who Agree and

Strongly Agree) regularly pull reports on their

process – more than 3 times that of unsatisfied

reviewers (15%). It’s hard to be satisfied with your

code-review process when you can’t track its

aggregate effectiveness.

Teams that do review reports and key performance

indicators, are more likely to know what to improve

when making changes. As an example, tracking

the types of defects found, and their severity, can

provide insights to aid in process improvement.

Adopting a tool that enables you to track key

metrics and pull custom reports on peer code

reviews is the fastest way to drive meaningful

process improvement.

My team regularly pulls reports and metrics on our code
review process. fig.27

The 2020 State of Code Review | 30

5. Code review does double duty in
training new people.

When we mentioned 59% of teams use code review

as a way to train and onboard new developers, we

found those teams are taking the right approach.

This chart shows the breakdown between the two

code-review satisfaction cohorts (fig. 28).

Teams that use code review for onboarding and
training are twice as likely to be satisfied with
their code reviews.

74% of teams that are satisfied with their code-

review process are using it as an onboarding and

training tactic – compared to only 33% of the

unsatisfied cohort. 81% of all respondents say

that they often learn during code reviews, so the

pairing is a natural fit.

Teaching and learning are critical to keeping us

engaged. Whether you’re a senior engineer or new

to the team, you have something to offer or can

learn something new. Code review can be a vehicle

for knowledge sharing as well as daily learning.

When your team is learning and collaborating on a

daily basis, they’ll build trust and improve your code

quality at the same time.

My team uses code review to onboard and train new developers.
fig.28

The 2020 State of Code Review | 31

FINAL THOUGHT:

Communication and
Collective Ownership
Now, more than ever before, we have collectively

experienced separation from others. Our desire to be

in community is strong, but how can we build community

while being so apart? Answer: communication. And

collective ownership.

As we reflect on this report, it’s easy to see that these

two factors play vital roles in our software quality

initiatives. If communication improves, our sense of unity

improves. It’s actually refreshing to engage with peers,

and ultimately encouraging when you see the work

they’re doing.

Even with all that’s happened this year, the future of

code review looks bright. When we come together behind

a common cause and decide to take ownership, our

outlook and productivity skyrocket. We begin to help

others succeed, and they, in turn, help us. It’s amazing

what happens when we’re all rowing in the same

direction. So metaphorically speaking, let SmartBear

be your coxswain.

The 2020 State of Code Review | 32

The ideal review process is the one that ensures having

an application where internally (the code), and exter-

nally (the functionality), meet the requirements, do not

contain errors, and are developed in the most efficient

way possible under the standards (which there should

be) of the company and the market. The goal is to

achieve high quality, low cost, predictable times and

customer satisfaction.

Every commit is reviewed by at least one other develop-

er using integrated tooling. Reviews are automatically

generated and linked to the system of record (e.g. the

story in JIRA). Reviews are completed in a reasonable

amount of time (hours/days depending). Review feed-

back is provided in a constructive manner, and focuses

on standards, security, best practices, easy-to-avoid

pitfalls, and of course tries to point out mistakes as

much as possible.

Focus on helping more junior devs learn from their

mistakes and do better next time. It should be less about

squashing individual bugs and more about making the

team better.

Marcelo E. Pujia says:

Felix Lepa says:

Evan says:

Section 6:
Handing Over the Mic.

“What’s Your Ideal
Code-Review Process?”

One of the ways we can improve our processes

is through learning from other people and

organizations. For the 2020 report, we asked

the following questions: What would your

ideal review process look like? What business

and team goals would it achieve?

Over 370 gracious individuals responded

and provided feedback – which we unfortu-

nately can’t entirely fit into this report. Since

our space is so limited, we tried to include

varying perspectives. Remember, there’s no

“right answer” when it comes to process.

However, even though we all have unique

needs, as do our businesses, it’s safe to say

that we all need process.

Team goals include standardized code, mentoring and

training of new/junior developers, team coherence, and

achieving high customer satisfaction via high code quality.

Business goals include high code quality and customer

satisfaction, standards adherence, security and com-

pliance, as well as team and code standardization, and

training of developers.

Michele says:

First of all, we have to understand the context and the

task goal. So we have to do a process review, regarding

the quality standard and well-known practices. We have to

control if all the possible tests are implemented. If some-

thing may be done well, we have to talk and share our

point of view, and decide what to do. When all seems ok,

we can set our “green” feedback and allow merge.

+ quality standards + sharing context

+ sharing knowledge + team building

Ian Willats says:

Ideally the process should be asynchronous, web-based,

and tightly-coupled to the software repository, require-

ments, and test management systems.

The main business goal is to reduce software defects as early

as possible, but with the side benefits of sharing knowledge

and ensuring consistency and conformance to conventions.

The 2020 State of Code Review | 33

Roman Vlasenko says:

Priyanka Sethi says:

Brian Lowe says:

Junior does the work, senior #1 reviews and adds com-
ments or guidance, senior #2 also reviews and adds com-
ments or guidance, senior #2 merges.

Junior gets educated on what the business considers
‘best practice,’ as well as technical coding help. Seniors
get to understand each others’ views and share ideas.

Business benefits by having consistently applied coding

standards and best practices.
An ideal code review for me is when there are no more

than 150-200 lines of added code in a review, the code is

clean and easy to read, there are no nesting conditions,

and a person is available for communication by his pull

request. Most importantly, all the goals set in the ticket

were completed and tested. If possible, a screencast by

code should be recorded. The goals of the company are

tested, working, readable and supported code.

Lean, objective, as much automated as possible (e.g.

linting, spell-check, merge and test pipelines), checklist,

documented guidelines, minimum approval criteria in-

place for code merge.

TDD Goals:

 | A certain level of code standards are always maintained

 | Reduces probability of merging breaking changes (P0)
to the mainline

 | New members can learn to write production-ready
code quicker than in case of continuous manual
knowledge transfer, etc.

While reviewing, consider these points: 1. Maintain

coding standard 2. Methods or file are created as

reusable component. 3. Minimize db hit and get limited

data required. 4. Better to use library functions until

you maintain Big O notation. 5. Consider performance

the most important part of your software. 6. It’s always

helpful to maintain test case for each functionality and

keep it updated.

These points will help you to maintain concise, reusable

components of codes and, last but not least, less num-

ber of bugs introduced in each development cycle.

Vikas Kumar says:

Mirga Jazbutis says:

All code changes would be reviewed by a developer
familiar with the feature being worked on. That is, the
reviewer would be able to fully understand the code be-
ing changed. Too often, the reviewer is clueless and the

review is just a check-off without substance.

Having consistent substantive reviews results in fewer bugs

and in fewer forgotten or misinterpreted requirements,

leading to a better product that satisfies customer requests.

That leads to reduced tech support efforts and increased

bandwidth in the development team to add even more new

features. And ultimately, it’s the addition of new features

requested by customers that keep our customers happiest.

The 2020 State of Code Review | 34

Meghna Pradhan says:

Read More Responses

My ideal review process would reward effort and focus on

learning. The goal would be to improve people’s understanding

of what good code looks like.

Review process should have functional as well as non-functional

requirements review. It should have peer-to-peer, over-the-

shoulder review along with a proper tool-based review. The ideal

code review would be done by the development environment

where at the time of development itself, there will be guardrails/

alerts/warnings shown that will need to be addressed to proceed

with the development. At the time of tool-based code review

there should be flexibility to override the code review in case of

any exceptions, but that should require the next level approval.

Before the start of development and whenever any new developer

is onboarded, there should be a proper training provided

specifying the best practices and coding standards and then the

complete step by step process of code review and the criteria to

look for. There should be very few exceptions in the code-review

process, if we are seeing multiple exceptions, then the review

process needs to be updated. Proper review of requirements

and simultaneous code review during the development will

help meet all business and team goals by eliminating the

overhead of peer review.

Aishani says:Aishani says:

Want to see what other
peers had to say?

See the top 50 here.

https://smartbear.com/learn/code-review/what-makes-a-great-code-review/

The 2020 State of Code Review | 35

Design, Model, & Share
API Definitions

SwaggerHub
Collaborative API Quality

Platform

ReadyAPI
Code, Document &

Artifact Review

Collaborator

Swagger
Interact With

API Resources

Create & Execute API
Test Automation

SoapUI

Open
Source
Tools

Pro
Tools

https://smartbear.com
https://swagger.io/tools/swaggerhub/
https://smartbear.com/product/ready-api/overview/
https://smartbear.com/product/collaborator/overview/
https://swagger.io
https://www.soapui.org/tools/soapui/

The 2020 State of Code Review | 36

https://smartbear.com

